Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Leukemia ; 36(11): 2577-2585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35974102

RESUMO

Chromothripsis is a mitotic catastrophe that arises from multiple double strand breaks and incorrect re-joining of one or a few chromosomes. We report on incidence, distribution, and features of chromothriptic events in T-cell acute lymphoblastic leukemias (T-ALL). SNP array was performed in 103 T-ALL (39 ETP/near ETP, 59 non-ETP, and 5 with unknown stage of differentiation), including 38 children and 65 adults. Chromothripsis was detected in 11.6% of all T-ALL and occurred only in adult cases with an immature phenotype (12/39 cases; 30%). It affected 1 to 4 chromosomes, and recurrently involved chromosomes 1, 6, 7, and 17. Abnormalities of genes typically associated with T-ALL were found at breakpoints of chromothripsis. In addition, it gave rise to new/rare alterations, such as, the SFPQ::ZFP36L2 fusion, reported in pediatric T-ALL, deletions of putative suppressors, such as IKZF2 and CSMD1, and amplification of the BCL2 gene. Compared to negative cases, chromothripsis positive T-ALL had a significantly higher level of MYCN expression, and a significant downregulation of RGCC, which is typically induced by TP53 in response to DNA damage. Furthermore we identified mutations and/or deletions of DNA repair/genome stability genes in all cases, and an association with NUP214 rearrangements in 33% of cases.


Assuntos
Cromotripsia , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Rearranjo Gênico , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adulto
2.
Leuk Lymphoma ; 63(6): 1356-1362, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35045798

RESUMO

High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (DH/TH-HGBL) still miss an in-depth genomic characterization. To identify accompanying genetic events, we performed a pilot study on 7 cases by applying DNA microarray and targeted NGS sequencing. Interestingly, the genetic background of DH/TH-HGBL is largely overlapping with that of other high-grade/poor prognosis lymphomas. Namely, copy number abnormalities were trisomy of chromosome 7 and chromosome 8q gain, encompassing MYC. Among gene variants, those affecting transcription factors (MYC, FOXO1), epigenetic modulators (KMT2D, EZH2 and CREEBP), and anti-apoptotic gene (BCL2), were recurrent. MYC and BCL2 were mutated in 3 and 5 cases, respectively. In addition, mutations of FOXO1, previously reported in Diffuse Large B-Cell Lymphomas, were also detected. Clarifying the genomic background of this subset of high-risk lymphomas will pave the way for the clinical use of new biomarkers to: (1) monitor treatment response and; (2) consider alternative targeted therapies.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-6 , Proteínas Proto-Oncogênicas c-myc , Rearranjo Gênico , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Projetos Piloto , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética
3.
Blood ; 138(9): 773-784, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876209

RESUMO

Acute leukemias (ALs) of ambiguous lineage are a heterogeneous group of high-risk leukemias characterized by coexpression of myeloid and lymphoid markers. In this study, we identified a distinct subgroup of immature acute leukemias characterized by a broadly variable phenotype, covering acute myeloid leukemia (AML, M0 or M1), T/myeloid mixed-phenotype acute leukemia (T/M MPAL), and early T-cell precursor acute lymphoblastic leukemia (ETP-ALL). Rearrangements at 14q32/BCL11B are the cytogenetic hallmark of this entity. In our screening of 915 hematological malignancies, there were 202 AML and 333 T-cell acute lymphoblastic leukemias (T-ALL: 58, ETP; 178, non-ETP; 8, T/M MPAL; 89, not otherwise specified). We identified 20 cases of immature leukemias (4% of AML and 3.6% of T-ALL), harboring 4 types of 14q32/BCL11B translocations: t(2,14)(q22.3;q32) (n = 7), t(6;14)(q25.3;q32) (n = 9), t(7;14)(q21.2;q32) (n = 2), and t(8;14)(q24.2;q32) (n = 2). The t(2;14) produced a ZEB2-BCL11B fusion transcript, whereas the other 3 rearrangements displaced transcriptionally active enhancer sequences close to BCL11B without producing fusion genes. All translocations resulted in the activation of BCL11B, a regulator of T-cell differentiation associated with transcriptional corepressor complexes in mammalian cells. The expression of BCL11B behaved as a disease biomarker that was present at diagnosis, but not in remission. Deregulation of BCL11B co-occurred with variants at FLT3 and at epigenetic modulators, most frequently the DNMT3A, TET2, and/or WT1 genes. Transcriptome analysis identified a specific expression signature, with significant downregulation of BCL11B targets, and clearly separating BCL11B AL from AML, T-ALL, and ETP-ALL. Remarkably, an ex vivo drug-sensitivity profile identified a panel of compounds with effective antileukemic activity.


Assuntos
Biomarcadores Tumorais , Cromossomos Humanos Par 14/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Repressoras , Translocação Genética , Proteínas Supressoras de Tumor , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
4.
Genes Chromosomes Cancer ; 60(7): 482-488, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33611795

RESUMO

We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.


Assuntos
Biomarcadores Tumorais/genética , Duplicação Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-myb/genética , Adolescente , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Regulação para Baixo , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Proteína Homeobox Nkx-2.2/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptor Notch1/genética , Fator Nuclear 1 de Tireoide/genética
5.
J Cell Physiol ; 236(8): 5664-5675, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33432587

RESUMO

Warsaw breakage syndrome (WABS), is caused by biallelic mutations of DDX11, a gene coding a DNA helicase. We have recently reported two affected sisters, compound heterozygous for a missense (p.Leu836Pro) and a frameshift (p.Lys303Glufs*22) variant. By investigating the pathogenic mechanism, we demonstrate the inability of the DDX11 p.Leu836Pro mutant to unwind forked DNA substrates, while retaining DNA binding activity. We observed the accumulation of patient-derived cells at the G2/M phase and increased chromosomal fragmentation after mitomycin C treatment. The phenotype partially overlaps with features of the Fanconi anemia cells, which shows not only genomic instability but also defective mitochondria. This prompted us to examine mitochondrial functionality in WABS cells and revealed an altered aerobic metabolism. This opens the door to the further elucidation of the molecular and cellular basis of an impaired mitochondrial phenotype and sheds light on this fundamental process in cell physiology and the pathogenesis of these diseases.


Assuntos
DNA Helicases/genética , Anemia de Fanconi/genética , Instabilidade Genômica/genética , Síndrome de Kearns-Sayre/metabolismo , Miopatias Mitocondriais/metabolismo , Anormalidades Múltiplas/genética , RNA Helicases DEAD-box/genética , DNA Helicases/metabolismo , Anemia de Fanconi/metabolismo , Genômica , Humanos , Síndrome de Kearns-Sayre/genética , Miopatias Mitocondriais/genética , Mutação/genética
7.
Acta Neuropathol Commun ; 8(1): 145, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843091

RESUMO

The catalytic activity of human Telomerase Reverse Transcriptase (TERT) compensates for the loss of telomere length, eroded during each cell cycle, to ensure a correct division of stem and germinal cells. In human tumors, ectopic TERT reactivation, most frequently due to hotspot mutations in the promoter region (TERTp), i.e. c.1-124 C > T, c.1-146 C > T, confers a proliferative advantage to neoplastic cells. In gliomas, TERTp mutations (TERTpmut) mainly occur in oligodendroglioma and glioblastoma. We screened, for TERTp hotspot mutations, 301 adult patients with gliomas and identified heterozygous mutations in 239 cases: 94% of oligodendroglioma, 85% of glioblastoma, and 37.5% of diffuse/anaplastic astrocytoma. Besides the recurrent c.1-124 C > T and c.1-146 C > T, two cases of glioblastoma harbored novel somatic TERTp variants, which consisted of a tandem duplications of 22 nucleotides, i.e. a TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, both located downstream c.1-124 C > T and c.1-146 C > T. In silico analysis predicted the formation of 119 and 108 new transcription factor's recognition sites for TERTp c.1-100_1-79dup and TERTp c.1-110_1-89, respectively. TERTp duplications (TERTpdup) mainly affected the binding capacity of two transcription factors' families, i.e. the members of the E-twenty-six and the Specificity Protein/Krüppel-Like Factor groups. In fact, these new TERTpdup significantly enhanced the E-twenty-six transcription factors' binding capacity, which is also typically increased by the two c.1-124 C > T/c.1-146 C > T hotspot TERTpmut. On the other hand, they were distinguished by enhanced affinity for the Krüppel proteins. The luciferase assay confirmed that TERTpdup behaved as gain-of-function mutations causing a 2,3-2,5 fold increase of TERT transcription. The present study provides new insights into TERTp mutational spectrum occurring in central nervous system tumors, with the identification of new recurrent somatic gain-of-function mutations, occurring in 0.8% of glioblastoma IDH-wildtype.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Telomerase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/enzimologia , Feminino , Glioblastoma/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Telomerase/metabolismo
8.
J Mol Diagn ; 22(5): 629-639, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142900

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) results from deregulation of a number of genes via multiple genomic mechanisms. We designed a comprehensive fluorescence in situ hybridization (CI-FISH) assay that consists of genomic probes to simultaneously investigate oncogenes and oncosuppressors recurrently involved in chromosome rearrangements in T-ALL, which was applied to 338 T-ALL cases. CI-FISH provided genetic classification into one of the well-defined genetic subgroups (ie, TAL/LMO, HOXA, TLX3, TLX1, NKX2-1/2-2, or MEF2C) in 80% of cases. Two patients with translocations of the LMO3 transcription factor were identified, suggesting that LMO3 activation may serve as an alternative to LMO1/LMO2 activation in the pathogenesis of this disease. Moreover, intrachromosomal rearrangements that involved the 10q24 locus were found as a new mechanism of TLX1 activation. An unequal distribution of cooperating genetic defects was found among the six genetic subgroups. Interestingly, deletions that targeted TCF7 or TP53 were exclusively found in HOXA T-ALL, LEF1 defects were prevalent in NKX2-1 rearranged patients, CASP8AP2 and PTEN alterations were significantly enriched in TAL/LMO leukemias, and PTPN2 and NUP214-ABL1 abnormalities occurred in TLX1/TLX3. This work convincingly shows that CI-FISH is a powerful tool to define genetic heterogeneity of T-ALL, which may be applied as a rapid and accurate diagnostic test.


Assuntos
Biomarcadores Tumorais , Hibridização in Situ Fluorescente/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Evolução Clonal/genética , Feminino , Rearranjo Gênico , Heterogeneidade Genética , Testes Genéticos , Estudo de Associação Genômica Ampla , Humanos , Hibridização in Situ Fluorescente/normas , Masculino , Pessoa de Meia-Idade , Translocação Genética , Adulto Jovem
10.
Am J Case Rep ; 19: 1146-1151, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30262801

RESUMO

BACKGROUND Mitral valve aneurysms (MVAs) are uncommon conditions frequently associated with aortic valve endocarditis. They may be complicated by perforation and severe mitral regurgitation (MR). Optimal treatment of MVA, and in particular the best timing for surgery, are uncertain. CASE REPORT A 62-year-old man with a recent history of dental surgery presented to the Emergency Department complaining relapsing fever. A first echocardiogram demonstrated infective endocarditis of the aortic valve. The patient was primarily managed with specific antibiotic therapy. Despite this, a few days later he suffered from splenic embolization and an MVA with MR was detected. Surgical replacement of the mitral and aortic valves was therefore performed. CONCLUSIONS MVAs are infrequent but potentially severe complications of AV endocarditis. In the absence of definite treatment indication, the correct time for surgery should depend on concomitant clinical and infective features.


Assuntos
Valva Aórtica/cirurgia , Endocardite Bacteriana/cirurgia , Aneurisma Cardíaco/cirurgia , Insuficiência da Valva Mitral/cirurgia , Valva Mitral/cirurgia , Endocardite Bacteriana/complicações , Endocardite Bacteriana/tratamento farmacológico , Aneurisma Cardíaco/etiologia , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência da Valva Mitral/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA